
 1

Comments Received on SP 800-90, Recommendation for Random
Number Generation Using Deterministic Random Bit Generators

Robert Zuccherato, Entrust ..2

Werner Schindler, Bundesamt für Sicherheit in der Informationstechnik (BSI)7

William L. Millan, ISI, QUT ...9

Kristen Lauter, Microsoft...14

 2

From: Robert Zuccherato <robert.zuccherato@entrust.com>
Date: Fri, 27 Jan 2006 08:57:26 -0500

1. Section 2: The last paragraph of this section states, “If the seed is kept secret, and the
algorithm is well designed, the bits output by the DRBG will be unpredictable, up to the
security strength of the DRBG algorithm.” Strictly speaking, this is not correct. The bits
output by the DRBG will be unpredictable up to the minimum of the seed entropy and the
security strength of the DRBG algorithm.

2. Section 7.2: The third paragraph of this section states, “The personalization string
shall be unique for all instantiations of the same DRBG type.” This requirement is also
stated without rationale. It would seem then that this would preclude the use of a
personalization string that does not change or only changes rarely. However, there may
be valid and good reasons for including this type of personalization string. For example,
an implementation may not be able to create a personalization string that is unique every
time that a DRBG is instantiated, but it may be able to use a constant personalization
string (e.g., device serial number that remains constant between instantiations, but is
different for each device). There is value in using this type of personalization string since
it will still provide some variability, although not as much as when it changes for each
instantiation. We strongly suggest that unique personalization strings should be
recommended, not required. Note also that the text and the suggested personalization
string contents in Section 8.7.1 seem to support a more open interpretation of the
personalization string.

3. Section 7.3: Replace “contents” with “content” in the last sentence.

4. Section 8.2: The second paragraph says, “when reseeded, the seed SHALL be
different than the seed used for instantiation.” This makes it a system requirement to
ensure the seed is always different, which can easily be burdensome, and also does not
say that a reseed seed should be different from another reseed seed or that initial seeds
should be different across instantiations. Suggest rewording along the lines of “All seeds
used SHOULD be different and SHALL NOT knowingly be identical to a previously-
used seed.”

5. Section 8.2: It is probably also worth mentioning at this point that implementations
should not re-use the entropy input from the instantiation as the entropy input for the
reseeding (and then think that they have obtained prediction resistance). Suggest adding,
“When reseeded the entropy input used SHALL NOT be knowingly identical to a
previously-used entropy input.”

6. Section 8.6.3: Replace “it” with “or” in the second sentence.

7. Section 8.6.8: This section claims that reseeding is preferred over a new
instantiation. This had better not be true. If entropy assessment is failing, we have no idea
how to assess whether a system is secure or not, so it should be assessed as not secure
and not used.

8. Section 8.6.10: As plural nouns are used, the exact requirement can be unclear.
Suggest using a singular form, so any implementation choice can be seen to be either
conforming or non-conforming. The current text could be interpreted as requiring that a
given entropy input shall not be used to instantiate a DRBG more than once. However,

 3

the real requirement is that the seeds be different (so that the DRBGs do not output
identical bits), not that entropy input be different. There may be good and valid reasons
for instantiating a DRBG with the same entropy input more than once (e.g., new entropy
input is not available and the alternative is to just keep a single DRBG instantiated for a
very long period of time). We suggest rewording this to: “A seed used by DRBGs shall
not knowingly be used again as a seed for another DRBG or for any other purposes (e.g.,
domain parameter or prime number generation). Similarly, the specific entropy input
used to create a seed shall not be used for other purposes, although it may be used again
to instantiate another DRBG, as long as the created seed is different.”

9. Section 8.7.1: It is not clear what is meant by “The value of any secret information
contained in the personalization string.” It appears that this sentence is trying to make the
point that the DRBGs cryptographic mechanisms will protect the secret information and
thus information should not be used that requires greater protection. We suggest
rewording this sentence to “Secret information should not be used in the personalization
string if it requires a level of protection that is greater than the claimed strength of the
DRBG.”

10. Section 8.8: In regards to backtracking resistance and prediction resistance, the
system states cannot be distinguished from random “with less work than associated with
the security level of the instantiation”.

11. Section 9.1: Some of the comments occur between lines and so it is not clear
whether the comment applies above or below the line, the reader should not have to need
to figure this out. An example of this is in Section 9.1 after “Required info not
provided…” This occurs elsewhere, also.

12. Section 9.1: This section states (within a comment) that when instantiating a
DRBG the entropy input and the nonce “shall not be provided by the consuming
application as an input parameter during the instantiate request.” (A similar comment is
made in Section 9.2 regarding reseeding.) This requirement is stated without rationale.
We note that this requirement will make toolkit implementations of DRBGs without
entropy sources more difficult. It will make it impossible for a toolkit to implement a
validated DRBG without also implementing a validated entropy source. Given the
difficulty in implementing validated software entropy sources, this will make
implementing a validated software DRBG very difficult. We see no reason to not allow a
consuming application to obtain a given amount of entropy (possibly from a hardware
source) and provide it to the DRBG. In addition, this will force the DRBG
implementation to place any entropy provided by the consuming application into the
personalization string, which does not necessarily seem to be the right place for it to go.
We also note that the requirement is ambiguous as written. Does it allow the consuming
application to provide a callback that would supply the entropy input and nonce? Does it
allow a non-validated DLL associated with the consuming application to be registered
that would supply the entropy input and nonce? Thus, we suggest removing the
requirement in this comment.

13. Section 9.1: This section (and subsequent sections) assumes that there will be a
state_handle to identify the internal state associated with various instantiations.
However, if an implementation only supports the instantiation of a single DRBG at a

 4

time, then an explicit state_handle is not required. Thus, the state_handle should be
made optional in this case.

14. Section 9.3.1: This section states that if a reseed capability is not available, then
steps 6 and 7 (where the DRBG is reseeded because the reseed_interval has been
reached) can be removed and replaced with an Uninstantiate call. However, there may be
valid reasons why an application may wish to uninstantiate at this point instead of
reseeding, even if reseed capabilities exist. Thus, replacing steps 6 and 7 by an
Uninstantiate call should be made strictly optional.

15. Section 9.5: The second paragraph of this section states that if errors occur during
testing, the condition causing the failure must be fixed and the DRBG must be re-
instantiated. However, it is not clear that this is always the best course of action. For
example, if the error occurs while testing the Uninstantiate function, naively following
this advice may open the application to further risks (if the DRBG is uninstantiated first).
The intent of this section is clear and valid, it just seems like more detailed advice should
be given to avoid potential problems.

16. Section 9.5.1: This section requires known answer tests on the instantiate function
prior to creating each instantiation unless several instantiations will be performed in
quick succession using the same input parameters. At this point, the term “input
parameters” is not clearly defined. If they include the entropy input, nonce and/or
personalization string, then the same input parameters should never be used and this
requirement would them seem a bit excessive. The term “input parameters” should be
clarified to not include these values, which are required to change with each call.

17. Section 9.5.2: It is not clear in the first paragraph of this section if the requirement
to perform known answer tests on the Generate function before its first use applies to the
first use per instantiation or the first use ever.

18. Figure 8: This figure indicates that the Counter starts at 1, however from the textual
description it looks like the counter starts at 0.

19. Section 10.1.1.2: There is no English word “preceed”, suggest “prefix”, as precede
or proceed may be confusing. This occurs elsewhere (example: 10.1.1.3) so suggest a
search to find all of them.

20. Section 10.1.1.4: We note in the design of this DRBG that in the Generate process,
if in step 5 we get H+C+reseed_counter mod 2seedlen to be a value less than about 212,
then it is possible on two successive calls to Generate to get substantial substrings
matching in the output. Now, the probability of this happening is negligible, so a change
is not required. However, it would be nice if the DRBG did not have this property. One
way to deal with it now would be to very slightly change the Hashgen process. Step 4.1
of that process could be changed to wi=Hash(0x04||V).

21. Section 10.1.2: We question the design of some aspects of this DRBG. First note at
the top of page 49 it is stated that the values V and Key are the “secret values” of the
internal state. This is a true statement related to the state between Generate calls.
However, note that in step 4 on page 52, during the Generate call the current value of V is
made public as part of the returned_bits. Thus, immediately following the completion of
step 4, the only secret value is Key. Hence the state space of this DRBG is at most outlen

 5

instead of 2*outlen. One way to deal with this reduction in state space would be to
modify step 4 as follows:

4a. Let output_block = V.

4b. While (len (temp) < requested_number_of_bits) do:

4.1 output_block=HMAC(Key,output_block).

4.2 temp=temp||output_block.

In addition, it is not clear why Key and V are each updated twice as part of the Update
process. This results in four calls to the HMAC function, when perhaps only two would
be sufficient, resulting in a lack of efficiency.

22. Section 10.2.1.3.1: We note that in Step 6 of the Instantiate process, the call to
Update() does not appear to provide any real advantage over simply parsing the created
seed_material string into Key and V. Thus, we question the inclusion of this Update
call here.

23. Section 10.2.1.3.2: As with the previous comment, the Update() call in Step 5 does
not appear to provide any real advantage over simply parsing the seed_material string.
Thus, we question the inclusion of this Update call here.

24. Section 10.2.1.3.2: At the top of page 59 modified instructions are given for what
to do if a personalization_string will never be given. However, these instructions do not
say what to do with the nonce, if provided.

25. Section 10.3.1: The Dual_EC_DRBG allows an output block length just slightly
less than the size of the base field. However, the paper available at
http://eprint.iacr.org/2005/324 (particularly Section 5) seems to indicate that perhaps less
than half the bits of the x-coordinate of an elliptic curve point are indistinguishable from
random. The results of this paper should be taken into account, or at least explained in
relation to the allowed block length.

26. Section 10.3.1.1: Item 1 subitem c: From a security perspective, it cannot be worse
and may be better if both P and Q are generated randomly, so this should at least be
allowed.

27. Section 10.3.1.3: Again, at the top of page 69, the nonce has not been taken into
account in this implementation note.

28. Section 10.4.2: We note that in step 8 of the Block_Cipher_df process all of the
data in the input_string is condensed into keylen+outlen bits, and then these bits are
then expanded into number_of_bits_to_return bits in step 12. This condensing and then
expanding seems unfortunate. It would seem to preserve the entropy in input_string
better if number_of_bits_to_return bits were produced in step 8 and then simply
returned at that point without continuing on to step 12.

29. Section A.1: This section mentions FIPS 186-3, but this is not released yet.

30. Section A.2: Use MAY instead of SHOULD in the second sentence, as this is one
acceptable way to avoid potentially weak points, but is probably not the best way from a
security perspective, which is to generate P and Q randomly.

 6

31. Section A.2.1: Regarding P, if a vendor wants to use randomly generated P, this
should be allowed.

32. Section C.3: The last paragraph on page 93 discusses concatenating samples from
an entropy source and the property of min-entropy that allows one to simply sum the
min-entropy of the parts to get the min-entropy of the concatenation. However, this
property only holds if the samples are not correlated. This is not made clear in the present
text and should be pointed out.

33. Section C.4: It is not clear why there will be at least 256 coin flips, when the
smallest security level is 112. The text does not reflect the procedure in the recent Entrust
submission to ANSI X9F1 for X9.82 Part 2 on Simplified Coin Toss Entropy
Assessment. Is there new information or what?

34. Section E.2: The paper mentioned in our comment on Section 10.3.1 should be
taken into account here.

35. Section E.2: Remove “already sluggish” as being too negative a phrase.

36. Appendix G: This section needs a table to summarize the discussion. Also, as these
methods need to be coded and tested, a column in the table could give the performance
times on some common machine, as a rough comparison as to what to expect in terms of
throughput. For example, something like the following:

DRBG Dominating
Cost/Block

Constraints Output/Second

Hash 2 hash 248 calls of 219 bits

HMAC 4 hash 248 calls of 219 bits

CTR (TDEA) 1 TDEA encrypt 232 calls of 213 bits

CTR (AES) 1 AES encrypt 248 calls of 219 bits

Dual EC 2 EC points 232 blocks

37. G.4: The example of a request for 2 million bits requires the computational expense
of at least 2 elliptic curve points seems jarring, at this example will need a lot more than
2. Suggest rewording this sentence to make the point that any call needs at least 2
computations.

Robert Zuccherato, Chief Cryptographer

Entrust

 7

From: Werner.Schindler@bsi.bund.de

Date: Wed, 1 Feb 2006 19:03:18 +0100

Here are some notes about the draft NIST SP 800-90 "Recommendation for Random
Number Generation Using Deterministic Random Bit Generators"

(December 2005).

Section 4) Terms and Definitions:

a) To "Non-Deterministic Random Bit Generator (Non-Deterministic RBG) (NRBG)":

The term "physical source" should be specified in Section 4. Does it include human
interaction and system data, for instance, or is it restricted to entropy sources that use
dedicated hardware to measure the physical characteristics of a sequence of events in
the real world? (cf. ISO FDIS 18031, "Random Bit Generation", Sect. 7.1)

b) To "Random Number":

The formulation "... a value in a set that has an equal probability of being selected
from the total population of possibilities ..." seems to be too strict. It does not exactly
match with the definition of the term "unpredictable".

Proposal: "equal probability" should be replaced by " ... has almost an equal
probability..."

c) To "Random Bit Generator" and "Random Number Generator": These definitions
seem to be too restrictive. Strictly interpreted they exclude even very small-biased
physical RNGs, for instance (cf. also comment b) to Appendix D).

d) To "Security Strength": To "...that is required to break a cryptographic algorithm or
system..." should e.g. be added "with known techniques".

e) To "Seed": The formulation "... and its entropy must be ..." should be replaced by "...
and the entropy of the determined portion of the internal state must be ..."

Appendix D: (Normative) Constructing a Random Bit Generator (RBG) from Entropy
Sources and DRBG Mechanisms:

a) D1.b uses the terms "Approved NRBG" and "Approved entropy source". What does
this exactly mean? Do approved NRBGs or approved entropy sources in the meaning
of this draft already exist?

b) Remark: Fig. D-1: NRBG contains the term "FULLENTROPY OUTPUT".
Interpreted in a strict sense this requires a very precise mathematical model of the
entropy source.

c) Assume that DRBG A (re-)seeds DRBG B. It should be pointed out in this subsection
that this operation reduces the amount of entropy of DRBG A that is currently

 8

available for (re-)seeding DRBG B. (Of course, this amount of entropy will be
increased by the next reseeding of DRBG A.)

 9

From: Bill Millan millan@isrc.qut.edu.au

Date: Thu, 02 Feb 2006 10:57:40 +1000

 10

 11

 12

 13

 14

From: "Kristin Lauter" klauter@microsoft.com

Date: Wed, 1 Feb 2006 18:56:13 -0800
We are pleased to submit the following comments on the December 2005 Draft of SP
800-90 on behalf of Microsoft Corporation, Redmond, WA.

1. General Comments

Our first comment concerns the relationship between SP 800-90 and the related ANSI
X9.82 standard currently under development. While we appreciate NIST’s desire for a
FIPS standard for DRBGs, we would strongly advise NIST to wait on finalizing SP 800-
90 until the ANSI X9.82 committee has completed its work. We believe that any
significant arbitrary differences between ANSI X9.82 and SP 800-90 could be
detrimental to the widespread adoption of both future standards by implementers. We
recognize that, for a variety of reasons one specification may need to be a superset of the
other; if that case arises we believe that ANSI X9.82 should be the subset.

Additionally, in general we favor parameter generation that can be performed and/or
verified independently through an open and transparent process.

2. Choice of Algorithms Included in SP 800-90

It is not clear to us from reading SP 800-90 why FIPS 186-2 style random number
generator engines are excluded from this recommendation. Assuming that there is no
known weakness in the general purpose FIPS 186-2 PRNG, it would appear to be prudent
to enable support in SP 800-90 for FIPS 180-2 hash functions in FIPS 186-2 random
number generation engines. (It’s possible that this support more correctly belongs in FIPS
186-3 over SP 800-90, but we believe it should be addressed in one of those two
locations.)

If NIST desires a number theoretic security reduction for the PRNGs in SP 800-90, then
we would recommend that NIST adopt one or more of the following possible options:
RSA PRBG, Blum-Blum-Shub, or the following cryptographically secure PRBG based
on walks on expander graphs:

Cryptographically secure PRBG based on walks on expander graphs.

Input: a random integer x0 to be the seed

Output: a pseudorandom bit sequence z1, z2, …, zn

 15

Step 1. The set-up is to generate secretly and randomly an expander graph and a
starting vertex of the graph (for example from the leading bits of x0). For example
the graph could be an expander graph with optimal expansion properties such as
1) the Lubotzky-Philips-Sarnak graphs or 2) the Pizer graph of supersingular
elliptic curves over the field of p2 elements with k-isogenies, where p is a large
prime of cryptographic size and k is a small prime such as 3.

Step 2. Use the first bit(s) of the seed to choose a path from the first vertex to a
next vertex. Set z1 to be the least significant bit of the next vertex. In general,
use the ith bit or chunk of bits of the seed to choose a path from the (i-1)th vertex
to the ith vertex. Set zi to be the least significant bit of the ith vertex.

Note that to improve efficiency, more bits can be extracted from each vertex.

More details on the graphs suggested in Step 1 of this approach are available in the
related paper “Cryptographic hash functions from expander graphs” by Charles, Goren
and Lauter, available on-line at http://eprint.iacr.org/2006/021. An analysis of the
properties of the resulting PRBGs will be forthcoming in a document in preparation by
those same co-authors.

3. Detailed comments and requests

1. We would like to request that a set of “Known Answer Tests” be included in SP
800-90 (perhaps in an Appendix). We think such tests would be especially
helpful in this case for determining implementation correctness.

2. Page 29, Prediction resistance sub-item (b): If one were to interpret this in terms
of the definition of internal_state given in section 7.1, then the statement given
here is incorrect. Given the complete internal state one can easily predict the next
state of the DBRG. A corrected version could read: “…given the knowledge of
the output of the internal state.”

3. Page 40, Section 9.5.3: It is very difficult to test if a source has a certain min-
entropy. Since min-entropy is a property of the distribution, not of particular
values. Could the draft propose one or more specific tests for the re-seed
function?

4. Page 42, Table 2: The draft currenly lists SHA-1 along with the SHA-2 family of
hash functions. Given the recent theoretical results on finding SHA-1 collisions
we believe that the use of SHA-1 in SP 800-90 should at least be discouraged if
not prohibited completely. Ideally, SP 800-90 would include a statement
deprecating use of SHA-1 for PRBGs.

 16

5. Page 48, Section 10.1.2: This section should include a list of approved keyed hash
functions for HMAC_PRBG (or a pointer to another section of the document
where such a list occurs).

6. Page 53, Section 10.2 (DBRGs Based on Block Ciphers): Note that using the
described mechanism for producing a block of pseudorandom bits by encryption
of V, V+1,.., V+k means that one should not use any encryption method that has a
related message attack. This section should include a note to this effect.

7. Page 64, Section 10.3.1: The function \phi is shown in Figure 13 and used in
equations on Page 65, but \phi is not defined until Page 69. A short sentence
describing the purpose of \phi near the beginning of Section 10.3 should suffice.

8. Page 64, Section 10.3: We note that the Dual-EC method described in this section
can also be implemented on finite fields by taking two numbers g and h in a finite
field, and letting si = gs_{i-1} and ri = hs_i, where ri being the output of the random
number generator.

9. Page 64, Section 10.3: Since P and Q are n-torsion points, there is a possibility
that Q = rP for some r. In this case, the system reduces to having a secret r and
outputting the x-coordinate of sir*P. This situation may be more or less secure
than when we have P and Q defined over different pieces of the n-torsion and
hence being linearly independent. We believe that the case when Q = rP is
actually more secure; since, in the other case we must have that the elliptic curve
has low embedding degree, and hence, the discrete log will be reduced to that
over finite fields. In particular, this property should be examined for the curves
given in the Appendix.

10. Page 74: Auxiliary Functions: 10.4.3. Block Cipher Hash Function
(Block_Cipher_Hash) The length of data_to_hash (input data) is required to be an
integral multiple of the block cipher’s block size (outlen). This requirement
depends on the checks in Block_Cipher_df function. The Block_Cipher_Hash
function would stand on its own more independently if this requirement is
removed, and a conventional padding scheme is instituted instead. A potential and
a commonly-implemented padding scheme is defined in PKCS#5 and in RFC
1423.

